Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
The environmental impacts of organic agriculture are only partially understood and whether such practices have spillover effects on pests or pest control activity in nearby fields remains unknown. Using about 14,000 field observations per year from 2013 to 2019 in Kern County, California, we postulate that organic crop producers benefit from surrounding organic fields decreasing overall pesticide use and, specifically, pesticides targeting insect pests. Conventional fields, by contrast, tend to increase pesticide use as the area of surrounding organic production increases. Our simulation suggests that spatially clustering organic cropland can entirely mitigate spillover effects that lead to an increase in net pesticide use.more » « less
-
Genetically modified (GM) crops have been adopted by some of the world’s leading agricultural nations, but the full extent of their environmental impact remains largely unknown. Although concerns regarding the direct environmental effects of GM crops have declined, GM crops have led to indirect changes in agricultural practices, including pesticide use, agricultural expansion, and cropping patterns, with profound environmental implications. Recent studies paint a nuanced picture of these environmental impacts, with mixed effects of GM crop adoption on biodiversity, deforestation, and human health that vary with the GM trait and geographic scale. New GM or gene-edited crops with different traits would likely have different environmental and human health impacts.more » « less
-
Human–wildlife conflict is an important factor in the modern biodiversity crisis and has negative effects on both humans and wildlife (such as property destruction, injury, or death) that can impede conservation efforts for threatened species. Effectively addressing conflict requires an understanding of where it is likely to occur, particularly as climate change shifts wildlife ranges and human activities globally. Here, we examine how projected shifts in cropland density, human population density, and climatic suitability—three key drivers of human–elephant conflict—will shift conflict pressures for endangered Asian and African elephants to inform conflict management in a changing climate. We find that conflict risk (cropland density and/or human population density moving into the 90th percentile based on current-day values) increases in 2050, with a larger increase under the high-emissions “regional rivalry” SSP3 - RCP 7.0 scenario than the low-emissions “sustainability” SSP1 - RCP 2.6 scenario. We also find a net decrease in climatic suitability for both species along their extended range boundaries, with decreasing suitability most often overlapping increasing conflict risk when both suitability and conflict risk are changing. Our findings suggest that as climate changes, the risk of conflict with Asian and African elephants may shift and increase and managers should proactively mitigate that conflict to preserve these charismatic animals.more » « less
-
Abstract Efficiently managing agricultural irrigation is vital for food security today and into the future under climate change. Yet, evaluating agriculture’s hydrological impacts and strategies to reduce them remains challenging due to a lack of field-scale data on crop water consumption. Here, we develop a method to fill this gap using remote sensing and machine learning, and leverage it to assess water saving strategies in California’s Central Valley. We find that switching to lower water intensity crops can reduce consumption by up to 93%, but this requires adopting uncommon crop types. Northern counties have substantially lower irrigation efficiencies than southern counties, suggesting another potential source of water savings. Other practices that do not alter land cover can save up to 11% of water consumption. These results reveal diverse approaches for achieving sustainable water use, emphasizing the potential of sub-field scale crop water consumption maps to guide water management in California and beyond.more » « less
-
The environmental impacts of organic agriculture are only partially understood and whether such practices have spillover effects on pests or pest control activity on nearby fields remains unknown. Using roughly 13,000 field observations per year from 2013-2019 in Kern County, CA , we estimate that organic crop producers benefit from surrounding organic fields, decreasing overall pesticide use and pesticides targeting insect pests. Conventional fields, in contrast, tend to increase pesticide use as the area of surrounding organic production increases.more » « less
An official website of the United States government
